Сразу две группы ученых из Китая и Канады заявили об успешном завершении экспериментов по телепортации частиц на 6 и 7 километров, используя обычные "городские" каналы оптоволоконной связи, говорится в статьях, опубликованных в журнале Nature Photonics.
Квантовая телепортация была впервые описана на теоретическом уровне в 1993 году группой физиков под руководством Чарльза Бенетта. По их идее, атомы или фотоны могут обмениваться информацией на каком угодно расстоянии в том случае, если были "запутаны" на квантовом уровне.
Для этого процесса необходим обычный канал связи, без которого мы не можем прочитать состояние запутанных частиц, из-за чего такую "телепортацию" нельзя использовать для передачи данных на астрономические расстояния. Несмотря на такое ограничение, квантовая телепортация чрезвычайно интересна физикам и инженерам по той причине, что ее можно использовать для передачи данных в квантовых компьютерах и для шифрации данных. Физики из университета Хэфэя (Китай) и университета (Калгари) одновременно заявили о том, что им удалось совершить подобную телепортацию не в лаборатории, а используя "нормальное" городское оптоволокно с помощью необычной методики "транспортировки".
В классической процедуре квантовой телепортации участвует две стороны, отправитель-"Алиса" и получатель-"Боб". Если "Алиса" хочет телепортировать какую-то другую частицу "Бобу", то она одновременно замеряет состояние, в котором находились обе ее частицы, и передает результаты замера по обычной линии связи "Бобу".
Во время этого замера связь между "запутанными" частицами разрушается, и частица "Боба" переходит в те состояния, в которых находилась частица "Алисы" во время телепортации. Чтобы узнать, в каком именно состоянии она находилась, необходимы данные замеров, которые "Боб" может использовать для получения данных о свойствах частицы.
Ученые из Китая и Канады добавили в эту схему еще третьего "игрока" – промежуточное звено "Чарли". Оно имитирует передаточное звено в будущей квантовой компьютерной сети или центральный процессор квантового компьютера, соединенный с банками памяти в виде "Алисы" или "Боба".
Добавление "Чарли", как пишут Цзян-Вэй Пань (Jian-Wei Pan) из университета Хэфэя и Вольфганг Титтель (Wolfgang Tittel) из университета Калгари, позволило перенести все самые сложные и дорогие компоненты, производящие все квантовые замеры и требующие охлаждения до почти абсолютного ноля, внутрь этого "посредника". Это заметно упростило работу "телепортатора" и понизило стоимость "Алисы" и "Боба".
Китайские ученые телепортировали кубиты, а их канадские коллеги – запутанные пары фотонов, так как они преследовали разные цели. Так, физики из Хэфэя планируют использовать свое "ноу-хау" для создания квантовых компьютеров, а их конкуренты из Калгари – для разработки новых систем квантового шифрования.
Пока ни та, ни другая технология не пригодны для практического использования – "телепортатор" китайских ученых передает не более двух кубитов в час, а разработка их коллег из Канады передает около 17 связанных фотонов в минуту, но при этом имеет сильные ограничения для использования на практике.
Как надеются физики, в ближайшие годы ситуация улучшится на порядки по мере создания более чистых и надежных однофотонных излучателей и приемников фотонов. Они позволят обмениваться телепортируемыми частицами на более приемлемых скоростях. Когда эти проблемы будут решены, на Земле может появиться первый квантовый интернет, заключают физики.
16:31
16:18
16:06
15:55
15:41
15:28
15:14
14:55
14:41
14:26
14:13
13:58
13:41
13:26
13:12
12:56
12:42
12:27
12:13
11:52
11:39
11:26
11:12
10:51
10:51
10:37
10:23
10:10
09:51
09:39
09:23
09:09
17:55
17:41
17:29
17:18
17:07
16:56
16:42
16:29
16:17
16:04
15:51
15:35
15:22
15:09
14:55
14:41
14:28
14:15
Вс | Пн | Вт | Ср | Чт | Пт | Сб | |
1 | |||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 | |
9 | 10 | 11 | 12 | 13 | 14 | 15 | |
16 | 17 | 18 | 19 | 20 | 21 | 22 | |
23 | 24 | 25 | 26 | 27 | 28 | 29 | |
30 |
15:39
09:49
13:25
14:04
12:51
15:28
12:39
13:24
13:02
12:39
15:08
11:15
14:33
12:26
11:23
13:25
15:19
14:27
15:16
12:13
15:14
14:44
13:25
11:06
13:12
11:13
14:15
11:26
09:35
11:41
10:37
10:55
12:28
12:13
12:51
11:35
10:45
16:51
10:21
14:27
12:37
11:23
13:03
10:47
13:03
13:15
14:58
14:55
14:31
14:19